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INTRODUCTION

The change in velocity of an acoustic wave in a solid due to stress is

known as the acoustoelastic effect. Hughes and Kelly (ref 1) as well as Bach

and Askegaard (ref 2) have derived expressions for the velocities of plane

acoustic waves in homogeneously stressed, isotropic, and homogeneous solids.

These expressions show, to a first-order approximation, that the relative change

in velocity (Av/v) is proportional to the uniaxial stress or a linear com-

bination of the triaxial principal stresses, with coefficients that are func-

tions of the second- and third-order elastic constants. The calculations,

unfortunately, are not readily extendable to Rayleigh waves or inhomogeneous

stress situations.

Hayes and Rivlin (ref 3) calculated the acoustoelastic effect for Rayleigh

waves propagating on the surface of a uniformly stressed material. These calcu-

lations were later extended by Hirao, Fukuoka, and Hori (ref 4) to one par-

ticular configuration of Rayleigh wave on an inhomogeneously stressed medium.

Again, the calculations have the disadvantage that they are not directly

applicable to situations involving other configurations of Rayleigh wave and

inhomogeneous stress, including the one considered in this report.

The perturbation theory for acoustoelastic effects as recently developed by V

Husson and Kino (refs 5,6), however, is quite general and can be applied in a

straightforward way to various configurations of acoustic waves and homogeneous V

or inhomogeneous stress states. We have applied this theory to the Rayleigh

wave situation as encountered in our work.

References are listed at the end of this report.
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THEORY

The starting point for applying this perturbation theory to Rayleigh waves

is the corrected form of Eq. (20) from Reference 6:

abm
8= - - V a {(2j+A)[A(a2 ) + B(a2 ) + C(a2 )] + (A+m)D(a2 ) + mE(a 2 )}4P ~am
8bi

* ; {- (X+2m-n)C(a2 ) - [D(a 2 ) + E(a2 )]}

* a 2 ((2X+6M+4m)A(a 2 ) + W[2D(a2 ) + E(a2 )]}

ab3+ a {(2X+6W+4m)B(a2 ) + M[2D(a2 ) + E(a2 )]))dV (1)
a3

(Here and throughout the report we employ the Einstein summation convention.)

In this equation, 6o is the phase shift experienced by the Rayleigh wave.

abm/aam are the derivatives of the static displacements (static strains). X, 4,

1, m, and n are the Lam6 and Murnaghan constants (second- and third-order

elastic constants). The ai are the coordinate axes, with a3 in the direction of

propagation and a2 normal to the surface and directed inward. W is the angular

frequency. P is the average power flow given by (ref 6):

P !VR fS(, u 2  au3 2-I I )dS (2)

where p is the density of the undeformed material, vR is the Rayleigh wave

velocity, and ui are the particle displacements for the Rayleigh wave. A, B, C,

D, and E are functions of a2 as determined from the following:

A( au2 1 = u3 2

a2 ) = 2' aa3

8u2 au3* 8u2  2 + u3
c(a2) 2Re H, "a (a2) 15a3

au 2 au3*E(a2) =2Re(5a3 Sa2 )(3)
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The particle displacements ui for a Rayleigh wave propagating along a3 are

given by (refs 6,7,8):

j
u1 = 0

u Q +e-aS2aSaL e-aLa2)e- i(a 3-wt)

2 = QA(+aS

=S 2 2  
i(Aa3-t )u3 = iQ (e-a S a2 - La2)e -  (4)

where

= A - ' aS = (W- + ' = (A2 + L (5)
yR VS VL

The shear, longitudinal, and Rayleigh wave velocities (Vs, vL, and vR) are in

turn given by (refs 7,8):

Af + 2M = 0.87 + 1.12v)(6
Vs , VR  (6)

with v, Poisson's ratio, given by

V (7)

After evaluating the integrands in Eqs. (1) and (2) over a unit length

along a,, a length L along a3 , and from 0 to along a2 , we calculate the rela-

tive change in velocity, Av/v, using (ref 6):

Av 8b3  O"vR

v 8a3  wL (8)

Of course to perform the integrations, one needs to assume a form for the static

strains consistent with a load applied as shown in Figure 1. We assume that the

normal stresses ai vary linearly with depth a2 :

,= 0 a2 = (H2a2 )Oo , a3 = (1+H3a2)ao (9)
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where o is the surface stress in the a3 direction, and the constants H2 and H3

must be determined by applying the principles of elastic theory to the geometry

of our specimen and load. Application of Hooke's law will then yield the static

strains to use in Eq. (1).

The assumptions of Eq. (9) lead to

AV 2H2  Y3H3vV=(7 + -2H2 + -W--)ao (10)

where the yi are complicated functions of the second- and third-order elastic

constants and the density. They are best evaluated numerically rather than ana-

lytically. The acoustoelastic constant for Rayleigh waves in this situation

would then be equal to the term in parentheses.

CALCULATIONS

For the type of steel used in this study (ASTM A723/MIL-S-46119A), the

elastic constants and density have been found by Scholz and Frankel (ref 9):

A = 110.3 GPa

= 79.9 GPa

1 = -388 GPa

m = -624 GPa

n = -747 GPa

p = 7.84 g/cm3

Using these values, we obtain y1 = -0.00411 I/GPa, Y2 = -84.7 m/(GPa-s), and Y3

= -79.7 m/(GPa-s).

To determine H2 and H3 , we first obtain the stresses in the ring as a

function of radial position r using elastic theory (ref 10):



a() - ----F/06D -- T -a2b2  r 1

ln(b/a) - -- a- b2)r3 a2 + b2  r
b2 + a2

+ - 2(a+b)F/D b/)nrb)-ln(r/a) + (b/r)zln(b/a),

b 2 -a 2 - -- ---- ---- ---  T7aT!:! ----------
b2 - a2

-F/D a2b2  3r 1
l b/ ) - - - -

c73 (rb2 + L z-

-------- 2(+b)F/D------- ~ 2 ~~r: £~i~ 1  (1

b2- 2 I.cbln(b/a)]2  (b/a)2  1

b2 - a2

F is the force compressing the ring at the split, D is the thickness of the ring

in the axial direction, and a and b are the inner and outer radii, respectively.

This solution is correct only in the region opposite the split. By dividing the

derivatives of a2 and a3 by 03 at r = a, we obtain H2 = 12.42 1/rn and H3 =

-497.8 1/mn (F and 0 drop out).

Using the above values of the y's and H's in Eq. (10), we obtain

A = B 0 + B1)00 (12)

where B0 = -0.00411 I/GPa, B1 = 0.00615 MHz/GPa, and f is the frequency in MHz.

Figure 2 shows the theoretical acoustoelastic constant versus frequency.

EXPERIMENTAL METHODS

The specimen was a split ring of ASTM A723 steel (MIL-S-46119A) machined to

the dimensions shown in Figure 1. An inhomogeneous stress was applied using a

compressive load at the split. We used three longitudinal wave transducersI

mounted on plastic wedges cut to the critical angle to couple a longitudinal

5N



wave in the wedge to a Rayleigh wave on the surface. All three wedges were

bonded to the steel with silicone rubber (GE RTV). The Rayleigh wave was intro-

duced at the first wedge and received at the second and third ones.

Velocity data were taken using a computer-controlled measurement system

(Matec Instruments, Model MBS-8000) based on phase detection methods developed

by Peterson (ref 11). The block diagram of Figure 3 shows the system's main

features. The measurement technique involves interactive automatic control of

the frequency and measurement of phase relationships.

From the phase detectors shown in the figure, the computer receives signals

proportional to the sine and cosine of each received pulse's phase with respect

to the original reference wave. The computer can then calculate the amplitude
I

and phase of each received pulse. Of necessity, the phase is calculated only as

an angle between -n and +n. Using an algorithm that interactively varies the

frequency slightly and measures the corresponding phase shifts, the system
I

calculates the transit time of the acoustic wave and the t--e difference between

receipt of the pulse at the two receiving transducers. The system also calcu-

lates changes in that time difference, due to the application of various loads, ,9

by measuring the corresponding phase shifts.

For ease of discussion, let the transit time from the sending transducer to

the first receiving transducer be T1 , and to the second receiving transducer,

T2. We then measured the time change AT = AT2 - ATI versus applied load. By

measuring the strain on the outer surface of the ring (Figure 1) and using the

principles of elastic theory (ref 10), we calculated the applied strain on the

inner surface between the two receiving transducers. The relative change in

velocity Av/v can then be calculated using

Av AT
V- CIDTo

61

% * . % 9. 'J . .'-. . . -L.'-~.% *
9



where EID is the strain at the inner diameter and To = T2 - T1 . The slope of

Av/v versus surface stress, known as the acoustoelastic constant, is then

obtained at various frequencies.

EXPERIMENTAL RESULTS

Figure 4 shows Av/v versus surface stress at 3 and 5 MHz. Figure 5 shows

the experimentally obtained acoustoelastic constants for Rayleigh waves at fre-

quencies between 3 and 5 MHz. A linear least squares fit of the acoustoelastic

constants to Eq. (12) was then performed to obtain experimental values of the

coefficients Bo and B1 . We found that Bo = 0.009 l/GPa and el = -0.032 MHz/GPa.

A number of explanations for the differences between the theoretical and

experimental determinations of B0 and B1 are possible. One possible explanation P

is that the elastic constants used in the calculation are not representative of

this sample. This specimen was cut from a cylinder that had previously

undergone an autofrettage process (plastic deformation to induce compressive

residual stress at the inner surface). Other treatments that the material was

subjected to, such as cold rolling and forging, can also have drastic effects on

the elastic properties of the material.

CONCLUSION

As expected, the relative change in Rayleigh wave velocity was observed to

be proportional to the applied stress, with a proportionality constant known as

the acoustoelastic constant, that varied with frequency. Furthermore, the

variation of the acoustoelastic constant with frequency agreed crudely with the

Bo + B1/f form predicted by theory. The differences in magnitudes of 80 and B1

can possibly be attributed to changes in the elastic constants caused by treat-

ments that the specimen had previously undergone.

7
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